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Abstract
The hippocampus is known as one of the most important brain structures since the change 
in its volume is an early symptom of many diseases such as Alzheimer’s disease. Accu-
rate measurement of the hippocampus is very helpful in identifying lesions. Hippocampus 
segmentation in MRI images is of vital importance for the in-depth study of many brain 
diseases. However, hippocampus segmentation remains a difficult task due to its small 
size, complex shape, as well as its imaging characteristics with low contrast and weak and 
blurred boundaries. To overcome these problems, in this paper, an efficient process is sug-
gested by modeling and solving a system of two-dimensional partial differential equations 
(PDEs). The first equation allows for restoration using Euler’s equation, similar to aniso-
tropic smoothing based on a regularized Perona and Malik filter that removes noise while 
preserving edge information. The second equation uses the adaptive level set method to 
segment the image based on the solution of the first equation. This process takes place 
alternately between these two equations until convergence. This approach allows develop-
ing a new algorithm that overcomes the studied model drawbacks. Results of the proposed 
method give clear segments that can be applied to any application. The proposed method is 
applied for the hippocampus volume calculation associated with the Scheltens scale. Per-
formance evaluations compared automatic segmentations with manual segmentations per-
formed by expert radiologists. The results revealed a Dice similarity rate average 91.8% 
and with a volume value varies between 3.19 cm3 and 1.3 cm3 for the right hippocampus 
in the Scheltens scale, which represents a very significant value compared with other work 
in the field. Therefore, the method proves clinically useful and effectively segments the 
hippocampus and gives credibility to the volume calculation, which shows that the devel-
oped approach produces superior results in terms of quantity and quality compared to other 
models already presented in previous works.
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1 Introduction

The hippocampus is a small subcortical cerebral structure, it is an important element 
of the limbic system of the brain [1], it is located in the medial temporal lobe and plays 
an important role in human cognition, learning, short-term and long-term memory, and 
emotional behavior [2–4]. Moreover, it is one of the few regions of the brain in which 
neurogenesis occurs [5]. Several papers have provided more detailed information show-
ing that the hippocampus is closely linked to human health and disease. Abnormality of 
this structure is associated with neurodegenerative diseases and brain disorders includ-
ing Alzheimer’s disease [6, 7], epilepsy [8, 9], schizophrenia [10, 11], mild cognitive 
impairment [12] and major depression [13]. Hippocampal atrophy has been shown to 
be one of the first observable features for the detection of Alzheimer’s disease even at 
an early stage [14] and [15]. In schizophrenia, symmetry between the left and right hip-
pocampus is used as one of the indicators [16]. The study of hippocampal volume can 
provide useful results since the volume change is a symptom of many brain diseases. 
The precise delineation of this structure boundaries makes it possible to obtain a meas-
urement of the volume and to estimate its shape, which can be used to diagnose certain 
diseases, such as Alzheimer’s disease.

Segmentation of the hippocampus in MRI images is of vital importance to aid in 
the diagnosis. Many clinical applications depend on the results of segmentation of MRI 
brain structures that allow us to know the changes in brain anatomy during the develop-
ment of the disease.

The segmentation of the hippocampus in MRI images is one of the major challenges 
due to its imaging characteristics, with an intensity very close to other adjacent struc-
tures, such as the amygdala. The similarity in intensity caused the hippocampus to have 
faint and fuzzy boundaries. With this challenge a segmentation method that relies solely 
on image information may not produce accurate segmentation results.

In this paper, our objective is to enhance the precision and quality of hippocam-
pal segmentation by addressing the limitations associated with techniques relying on 
deformable contours, particularly those utilizing level set methods. We succinctly out-
line our contributions as follows:

1. Making a compromise between image restoration, edge conservation and correct 
segmentation by modeling and solving two partial differential equations simultane-
ously. The first equation allows for restoration that removes noise while preserving 
edge information. The second equation use adaptive level set method to segments the 
image based on the solution of the first equation. This process takes place alternately 
between these two equations until convergence. ensuring a balanced and effective 
solution.

2. The second novelty in our proposed method involves integrating it with the Scheltens 
scale for the calculation of hippocampal volume. this association between segmenta-
tion and Scheltens scale offer a unique perspective that has not been explored in prior 
research.

This article is organized as follows: after presenting this introduction, the next sec-
tion is devoted to related work; the proposed method is presented in Section 3. Section 4 
deals with the simulation experiments that justify the contribution of the article to the field 
applied. Section 5 provides a conclusion on the results obtained.



Multimedia Tools and Applications 

1 3

2  Related Work

We begin this section with a demonstration of automatic segmentation methods for med-
ical images. Since our work focuses on hippocampal segmentation in MRI images using 
level set methods, we will provide more details on these studies. We will present the 
drawbacks associated with these methods and discuss previous efforts to mitigate them. 
Finally, we will introduce our proposed method designed to address these limitations.

2.1  Automatic medical image segmentation methods

In the traditional way, Clustering approaches, such fuzzy mean, are used to achieve 
image segmentation [17] and Many manually created low-level features, like pixel value 
distribution and gradient histogram, can be clustered using a genetic algorithm [18]. 
In image segmentation, probabilistic techniques are also frequently employed.[19–21]. 
Yingqian Liu and Zhuangzhi Yan in [22] propose a semi-automatic model that com-
bines a deep Learning network and the lattice Boltzmann method for the segmenta-
tion of hippocampus. Ferhat Bozkurt et al. in [23] propose A texture-based 3D region 
growing approach for segmentation in witch they optimizes segmentation parameters 
through dynamic adjustments informed by texture knowledge. Liu, M et al. propose a 
multi-model deep learning framework based on convolutional neural network (CNN) 
for joint automatic hippocampal segmentation and AD classification using structural 
MRI data [24]. Tao, C. et al. conclude in their paper [25] that the joint training strategy 
ensures simultaneous optimization of the image synthesis network and the segmenta-
tion task, resulting in a more accurate and effective segmentation of the hippocampus in 
the context of brain tumor radiotherapy planning. A, FP and Liu, Je in [26] proposes a 
multi-level boundary-aware RUNet segmentation model in order to solve the problem of 
poor adaptability of deep learning network structures to medical images. Jia-Ni Li et al. 
in paper [27] proposed a novel cross-layer dual Encoding-Shared Decoding network 
framework with Spatial self-Attention mechanism (called ESDSA) for hippocampus 
segmentation in human brains. Considering that the hippocampus is a relatively small 
part in MRI, thy introduced the spatial self-attention mechanism in ESDSA to capture 
the spatial information of hippocampus for improving the segmentation accuracy.

A novel method for the automated segmentation of the hippocampus from struc-
tural magnetic resonance images (MRI), based on a combination of multiple classifiers 
is presented by P. Inglese et  al. in [28]. Chunming He et  al. have introduced innova-
tive methods to improve camouflaged object detection and segmentation. Their FEDER 
model, detailed in [29], combines traditional detection with an auxiliary edge recon-
struction task, resulting in highly accurate object boundaries. In [30], they present the 
WSCOS method, which addresses intrinsic similarity challenges using a multi-scale fea-
ture grouping module to achieve complete segmentation for single and multiple objects. 
Lastly, their ICEG method, described in [31], enhances detection by extracting internal 
coherence and employing edge guidance, ensuring more comprehensive segmentation 
results while eliminating false predictions.

Among the primary difficulties in using automatic medical image segmentation for 
MRI and CT scans is the defect with imaging process that frequently lead to inconsist-
encies brightness and contrast levels as well as low sharpness of image of borders.
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2.2  Level set models in medical image segmentation methods

On the flip side, deformable active contours serve as an efficient tool for image segmen-
tation and pattern recognition [32–35]. They explicitly represent the object’s shape and 
boundary, combining numerous desirable characteristics. Chen, H et al. in [36] introduces 
an accurate and robust active contour model to tackle the challenges of intensity inhomoge-
neity and noise frequently encountered in real medical images.

Level set models, also recognized as geometric deformable models, offer superior solu-
tions to overcome the primary drawbacks of parametric deformable models. The level set 
method involves initializing a two-dimensional (2D) closed curve or a three-dimensional 
surface with a potential that permits it to shift at a given speed perpendicular to itself [37]. 
This approach is employed in image processing as a segmentation tool by evolving a con-
tour based on image properties. In this context, we define an interface C as a level set 
function of higher dimension. The level set is represented over the rest of the image as the 
signed distance function from the zero level set, conventionally taking positive values for 
pixels inside C and negative values for pixels outside C.

However, the level set function often develops irregularities during evolution, caus-
ing numerical errors that impact the stability of the level set evolution. To address this, 
a numerical solution known as re-initialization [38, 39] is introduced, but the challenge 
arises in determining when and how it should be carried out, affecting numerical precision. 
Chunming Li et al. proposed Distance Regularized Level Set Evolution (DRSLE) in their 
paper [40], where the distance regularization effect eliminates the need for reinitializa-
tion. Unfortunately, application on real medical images revealed drawbacks in the DRSLE 
model.

2.3  Disadvantages of the level set in drsle model

The level set model introduced in paper [40], which denotes a regularized form of the 
model level set, faced the following drawbacks:

1. Li’s method is highly sensitive to strong noise and cannot extract edge without gradient 
or cognitive edges

2. it lacks in one feature that it uses only the edge information from the input image. This 
leads to incorrect segmentation

3. This model cannot segment in a correct way because it must artificially determine the 
model’s constant evolution speed’s symbol based on the location of the initial curve.

4. The edge indicator function g fails to distinguish between the background boundaries 
and target boundaries. Nonetheless, it is important to note that within a single image, the 
target boundaries and background boundaries usually exhibit distinct gradient directions.

In their work cited as [41], Y. Wu and C. He introduced a variational level set model 
featuring an indirect regularization term for image segmentation. They proposed 
a novel approach to image segmentation by incorporating an indirect regularization 
term, departing from the conventional practice of directly regularizing the level set 
function. The authors introduced an auxiliary function to regulate the level set function 
indirectly. The energy functional in their model consists of a data term, a linking term 
connecting the level set function and the auxiliary function, and a regularization term 
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for the auxiliary function. Both theoretical and experimental evaluations conducted by 
authors highlight the advantages of indirect regularization compared to the conven-
tional direct regularization approach.

C. Yu [42] has suggested a novel active contour model (R-DRLSE model) for image 
segmentation, The R-DRLSE model employs a variational level set strategy, leverag-
ing region information to identify image contours by minimizing the associated energy 
functional. To streamline the process and eliminate the need for time-consuming re-
initialization, a distance regularization term is incorporated to penalize deviations of 
the level set function from a signed distance function while J. C. Young et al. [43] have 
introduced a new approach to contour evolution. The study evaluates the use of active 
contour models, specifically morphological Chan-Vese and morphological Geodesic 
Active Contour, for segmenting medical images. Results indicate that the morphologi-
cal Geodesic Active Contour model performs better than Chan-Vese, but both models 
still fall short of producing segmentation results suitable.

In their work [44], P. Liu and X. Xu improved the conventional distance regular-
ized level set evolution method, introduced new edge indicator functions and presented 
the Oriented Distance Regularized Level Evolution. This method leverages the direc-
tional correlation between the gradient vectors of the level set function and those of 
the original image to reconstruct the edge map of the original image. Consequently, 
the impact of undesired strong background boundaries is significantly mitigated and X. 
Cai [45] has proposed a coupled model for image segmentation and restoration. This 
study introduces a novel multiphase segmentation model that combines image resto-
ration and segmentation techniques. Leveraging image restoration aspects, the model 
effectively addresses images with high noise, blurriness, or missing data.

Furthermore, M. Larbi et  al. have introduced a novel Level Set Method driven by 
a New Signed Pressure Force function (SPF) for image segmentation [46]. this paper 
introduces a novel Level Set Method using a Signed Pressure Force (SPF) function for 
image segmentation. The method efficiently stops contours at weak or blurred edges 
and detects exterior and interior boundaries regardless of the initial contour’s place-
ment. A comparison with Chan Vese (C-V) model and Geodesic Active Contours 
(GAC) is conducted, evaluating performance visually and through similarity measure-
ments with reference images..

Despite the advancements in image segmentation using level set functions, a notable 
challenge persists. The issue of unwanted strong background boundaries. While level 
set methods have contributed to simplifying and enhancing the accuracy of image seg-
mentation, they have not fully addressed the problem of undesirable strong background 
boundaries. These persistent artifacts can undermine the precision and reliability of 
segmentation results, particularly when dealing with complex or intricate images.

In our paper, we propose a novel method that simultaneously addresses a two-
dimensional PDE system, striking a balance between image restoration, edge preserva-
tion, and accurate segmentation. The first PDE facilitates image restoration by employ-
ing a regularized Perona and Malik equation filter, effectively removing noise and 
preserving edge information in alignment with the detected contours. The second PDE 
is based on a level set model, utilizing the evolution of a curve propagating in a plane 
of its normal with a given speed. This evolution is guided by a function that halts the 
curve at the edges of objects to be detected in the image restored by the first PDE [47].
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3  Method

3.1  Formulation and Regularization of the Level Set Model

Equation 1 presents the standard form of the level set equation, where F denotes a directional 
force acting upon the implicit surface ∅.

This equation does not have an intrinsic means to maintain regularity, which makes evolu-
tion unstable. To remedy this problem, it is necessary to reinitialize periodically on a regular 
surface. When the implied surface begins to become unstable, the function is reinitialize by 
solving:

The accuracy of this method can be compromised, particularly when dealing with non-
smooth implicit surfaces or significant deviations between the signed distance function 
and the actual surface being reinitialized. Due to these challenges, leveraging a variational 
approach to derive the evolution equation offers an appealing solution, prized for its simplicity 
and robustness.

In their paper [40], Chunming Li et al. introduced a novel approach to level set evolution, 
termed Distance Regularized Level Set Evolution (DRSLE). This technique is formulated 
through the principles of variational calculus.

A common method for minimizing an energy functional involves finding the steady-state 
solution to the gradient flow equation.

In this case, we substitute the variable � with an energy functional, which we aim to mini-
mize, this is an energy functional derived using calculus of variation, the partial derivative 
shown in Eq. 3 becomes a Gâteaux derivative.

The formulation of energy functional is presented as follows:

3.2  External energy

In Eq. 4  �ext represent the external energy term that derives from an active contour model, lev-
eraging edge-based data. It comprises two intertwined components, operating collaboratively 
to guide the contour’s evolution:

where 𝜆 > 0 ,  ��R constants, the terms  Lg(∅) and A
g
(∅) are defined by:   Lg(∅) ≜ ∫

Ω
g�(∅)|∇∅|dx 

and Ag ≜ ∫
Ω
gH(−∅)dx. Where δ is the Dirac delta function and H represent the Heaviside 

function. g is edge indicator defined by g(|∇f |) = 1

1+|∇G�
∗f |

2

(1)
�∅

�t
= |F∇∅|

(2)
�∅

�t
= sign

(
∅0

)
(1 − |∇∅|)

(3)
�∅

�t
= −

��

�∅

(4)�(∅) = �Rp(∅) + �ext(∅)

(5)�ext(∅) = �Lg(∅) + �Ag(∅)



Multimedia Tools and Applications 

1 3

3.3  Regularization term

In Eq. 4 Rp(∅) is the level set regularization term also called penalty term. By incorpo-
rating a regularization term, we ensure the maintenance of the signed distance property 
of our evolving surface wich uphold numerical stability:

The potential function p:[0,∞) → R is required to have minimum points at s = 0 and 
s = 1, making it a double-well potential. The specific form is given by:

where   dp(s) = p
′

2
(s)∕s    satisfies  ||

|
dp(s)

|
|
|
< 1  and lim

s→0
dp(s) = lim

s→∞
dp(s) = 1 . Here p2

’(s) is 

the derivative of p2(s). Consequently ||
|
�dp(|∇∅|

|
|
|
≤ � , ensuring boundedness of the diffu-

sion rate.
With both regularization and external energy terms included, the energy functional in 

Eq. 4 can be rewritten as follows:

The constants μ, λ and � act as weights for each of the terms in our energy functional.
For the potential p2 . We can write (4) as:

Based on Eq. 3 we can write:

The resulting distance regularized level set evolution is expressed as: 

This formulation (10) serves as a basis for image segmentation applications, incorpo-
rating edge-based information g.

The functional energy �(∅) can be minimized by solving the following gradient flow:

This model (11) represents an edge-based geometric active contour, specifically tai-
lored for image segmentation, with the advantage of distance regularization eliminating 
the need for re-initialization.

(6)Rp(∅) ≜
� Ω

p(|∇∅|)dx

(7)p2(s) =

{
1

(2π)2
(1 − cos (2πs)) if s ≤ 1

1

2
(s − 1)2, if s ≥ 1.

�(∅) = �
∫ Ω

p(|∇∅|)dx + λ
∫ Ω

g�(∅)|∇∅|dx + �
∫ Ω

gH(−∅)dx

(8)��

�∅
= �

�Rp

�∅
+

��ext

�∅

(9)�∅

�t
= −�

�Rp

�∅
−

��ext

�∅

(10)�∅

�t
= �div

(
dp(|∇∅|)∇∅

)
−

��ext

�∅

(11)
�∅

�t
= �div

(
dp(|∇∅|)∇∅

)
+ ��(∅)div

(

g
∇∅

|∇∅|

)

+ �g�(∅)
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3.4  Proposed method

In level set models, an edge detector is employed to halt curve evolution at object 
boundaries, typically using a positive and regular edge function: 

 Where lim
t→∞

g(t) = 0  and g(|∇f |)= 1

1+|∇G�
∗f |

2 with G
�
(x, y) =

√
�exp

�

−
�x2+y2�

4�

�

. Where   G
�
∗ f   

is the convolution of the image f  with the Gaussian kernel (G, σ), which give a smoother version 
of the image.

The edge function g(|∇f |) is strictly positive in homogeneous regions and approaches 
zero near edges. Traditional active contour models rely on this edge function, which 
depends on the image gradient to halt curve evolution [34]. However, discrete gradients 
during implementation may be limited, resulting in the stopping function g(|∇f |)  never 
reaching zero at edges, potentially causing the curve to exceed boundaries, especially in 
heavily noisy images [36].

To address these limitations, a novel approach is proposed to integrate image restora-
tion and segmentation simultaneously. The challenge of selecting an appropriate vari-
ance σ for the Gaussian kernel is acknowledged, where excessive smoothing can lead 
to loss of image edges, while insufficient smoothing is influenced by noise, impacting 
segmentation quality.

The proposed method aims to estimate the image f  , reduce noise, and preserve edge 
details for accurate segmentation [48]. An anisotropic smoothing based on Euler’s equa-
tion is introduced, alongside a regularization method with contour preservation [49]. 
The image estimation equation is expressed as:

where f  and  y represent vectors containing the true and observed images, respectively, H 
is the observation matrix, β is a regularization parameter, and K enables the preservation of 
discontinuities. Euler’s equation is associated with the minimization criterion:

� is a regularizing function, and K =
��(|∇f |)

2|∇f |

Equation (10) is analogous to anisotropic diffusion [50, 51], with K = c(|∇f |) is the 
coefficient of heat transmission. depending on contours calculated by (1). Consider the 
function, K = k(∅) where the function  k(∅) satisfies the following conditions:  k(∅) is 
close to 0 near C (where C is represented as a level set of a function ∅), and it is near 1 
elsewhere. The function k evolves simultaneously as the algorithm converges.

Initially, the contour determined by C is not well-localized, causing k to be a blurred 
version of ∅, so   k(∅)  away from C and slowly decreases to 0 near C. As the conver-
gence of the algorithm progresses, C tends toward the contours of objects, and k tend 
to a Boolean function where k(∅) =0 on C (the contours) and k(∅) =1 in homogeneous 
areas of the image. To achieve this, a continuous function is employed that checks for 
the localization of contours and the homogeneity of regions in the image.

g(|∇f |)

(12)H∗(y − Hf ) + �div(K∇f ) = 0

(13)J(f ) =
∫

|y − Hf |2 + �
2

∫
�(|∇f )|
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The Boolean function approaches completion as the algorithm evolves, with the 
value of "e" gradually decreasing toward 1. The ultimate outcome is a Boolean function 
when "e" equals 1.

By coupling (11) with (12), the new system of two PDE is:

With predefined boundary conditions, the edge stop function is expressed as 
g(|∇f |) =

1

1+|∇f∕γ|2
 , where γ sets the gradient threshold for object detection.

(14)

⎧
⎪
⎨
⎪
⎩

k(∅) = 1 if ∅ ≥ e

k(∅)lineare 0 < ∅ < e

k(0) = 1 −
1

e

(15a)
�∅

�t
= �div

(
dp(|∇∅|)∇∅

)
+ ��(∅)div

(

g
∇∅

|∇∅|

)

+ �g�(∅)

(15b)
�f

�t
= H∗(y − Hf ) + �div(k(∅)∇f )
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4  Results and discussion

The experimental environment is Matlab R2014b installed onto a PC Intel (R) Core i3 
CPU, 2.40 GHz, 4 GB RAM. To prove the positive effect of proposed method, we ran-
domly choose samples from EADC-ADNI dataset Harmonized Protocol for Hippocampal 
Segmentation (www. hippo campal- proto col. net) [52] and subjectively compare the seg-
mentation results of the proposed method with the previous level set method and the drsle 
method.

In this section, several brain MRI images are used. To assess the robustness of the pro-
posed approach, visual and quantitative experiments were performed on these images. 
There are parameters μ, λ and α in this model, and the time step ∆t for the implementation, 
where:

µ is coefficient of the level set regularization term, λ is coefficient of the weighted length 
term Lg(∅) that contains Dirac delta function, α represent coefficient of the weighted area 
term Ag(∅) that contains Heaviside function, ε is parameter that specifies the width of the 
Dirac Delta function, and σis scale parameter in Gaussian kernel.

The choice of λ and µ can be fixed for the majority of applications, as the model dem-
onstrates insensitivity to their variation. We set λ = 5, μ = 0.04, ∆t = 5 and α is variable 
depends on the image used. and needs to be tuned for different images. The parameter β is 
manually tuned.

In the first experimental, segmentation is applied to MRI images in coronal, sagit-
tal and Axial view. Figure 1 presents results of the segmentation of the hippocampus in 
coronal view correspond to a subject with Alzheimer’s disease in advanced stage. In this 
experiment our approach is compared with distance regularized level set evolution model 
(drlse) [40]. It is clearly seen that drlse model fails to settle on the correct boundary, see 
Fig. 1(b). it is outstanding an overshoot of the contours on the two left and right globes of 
the hippocampus.

Figure 2 shows the segmentation results of the above two methods and our methods: 
(a) The segmentation result of level set method; (b) the segmentation result of [40], (c) the 
segmentation of the proposed method. The segmentation have serious boundary leakage in 
(a) and (b), while the results of our method are close to the ground truth.

Figure 3 presents results of the segmentation of the hippocampus in transverse vieuw. 
Figure 3 shows the segmentation results of the drsle method in [40] and in [53] and the 
proposed method: (a) The segmentation result of the contour draw by expert; (b) the drlse 

Fig. 1  The results of the segmentation of the hippocampus correspond to a subject with 
Alzheimer’s(advanced stage). (a) The irm image in Coronal view, (b) Zoom on the segmented region (c) 
Image segmented with drlse model (d) Image segmented with our proposed approach

http://www.hippocampal-protocol.net
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method; (c) the segmentation result of [53] — in the drlse method the segmentation result 
has serious boundary leaks; we used the result in [53] to compare the accuracy of this 
segmentation with the proposed method. and (d) the result of the segmentation of the pro-
posed method. we can see that DRLSE methods cannot segment HC correctly, while the 
results of our method compared with results in [53] are close to the ground truth.

In Fig. 4 Subject1, Subject2, and Subjet3 are three example subjects randomly selected 
from the baseline T1-weighted structural MRI data collected from 80 Alzheimer’s Dis-
ease (AD), 135 MCI(Mild cognitive impairment), 121 Normal Control (NC) subjects in the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) database.

4.1  Evaluation metrics for segmentation results

In order to quantitatively compare the effectiveness of segmentation, several techniques are 
used based on coefficients and indices. in this paper we used the Dice similarity coefficient, 
the Jaccard index (JI), sensitivity, FPR and FNR.

DSC =
2TP

2TP+FP+FN
, Jaccard =

TP

TP+FP+FN
, Sensitivity =

TP

TP+FN

FPR =
FP

FP + TN
.

Fig. 2  The positive effect of shape prior. (a) Results of the level set method; (b) results of the method in 
[40]; (c) results of our method. Sagittal vieuw 

Fig. 3  (a) Input image (b) The segmentation result of the contour draw by expert; (c) the drlse method; (d) 
the result of the segmentation of the proposed method. Axial vieuw 
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Fig. 4  a Comparison of segmented hippocampal regions by different methods for three example subjects 
from the test data. Shown coronal view, sagittal view, axial view. b Comparison of segmented hippocampal 
regions by different methods for three example subjects from the test data. Shown coronal view, sagittal 
view, axial view. c Comparison of segmented hippocampal regions by different methods for three example 
subjects from the test data. Shown coronal view, sagittal view, axial view
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where TP denotes the true positives, FP denotes the false positives,; FN denotes the false 
negatives and TN true negatives.

The experimental results obtained in this section are represented in Table 1.
From Figs. 1, 2, 3 and 4, and Table 1 it can be concluded that the proposed algorithm 

has the ability to provide good image segmentation. which makes it possible to achieve 
high contour precision for noisy medical images.

4.2  Second experimental

To show the effectiveness of the proposed method, we will proceed to calculate the volume 
of the hippocampus using the LSF function and the result obtained will be compared with 
real results.

For this, we apply the proposed method with the Scheltens scale for the calculation of 
the hippocampus volume.

The Scheltens scale or medial temporal lobe atrophy (MTA) score is useful in distin-
guishing patients with Alzheimer’s disease from those without disorders. The MTA score 
should be assessed on a slice through the hippocampal corpus on coronal T1-weighted 
images. This scale is based on a visual score of the width of the choroid fissure, the width 
of the temporal horn and the height of the hippocampal formation. The Scheltens Scale is 
widely used in clinical settings as well as in research studies to provide an objective meas-
ure of brain atrophy in patients with dementia. It can help in the diagnosis and monitoring 
of the progression of Alzheimer’s disease. The scale ranges from 0 to 4, scale 0 indicates 
no atrophy and scale 4 indicates severe atrophy. Assessments are based on visual com-
parisons with reference images, taking into account the size and shape of specific brain 
regions. Figure 5 shows an example of the Scheltens scale [54].

While the Scheltens scale relies on visual inspection and subjective rating, segmenta-
tion provides a more quantitative and objective assessment by measuring the volumes or 
sizes of specific brain structures. Segmentation can be used alongside the Scheltens scale 
to complement the visual assessment with precise measurements. It’s important to note that 
both the Scheltens scale and segmentation play important roles in neuroimaging research 
and clinical practice, providing valuable information about the severity of atrophy and ena-
bling the study of disease progression and treatment effects. In the following experiment, 
the images in Fig.  6 are segmented using the proposed method to associate qualitative 

Table 1  Computed average 
Values of Jaccard, Dice, 
Sensitivity, FPR

Average Jacard Dice sensitivity FPR
Subj1
Our method 0.9996 0.9112 0.9998 0.0002
Work [21] 0.7234 0.8392 0.7537 0.0303
Average Jacard Dice Sensitivity FPR
Subj2
Our method 0.9815 0.8913 0.9827 0.0012
Work[53] 0.8794 0.8315 0.8798 0.0004
Average Jacard Dice Sensitivity FPR
Subj3
Our method 0.9983 0.9215 0.9992 0.0009
Drsle 0.6538 0.7809 0.8831 0.2293
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visual assessment with quantitative measurements. This allows for the comparison of sub-
jective visual evaluations with objective volume measurements. By combining these two 
approaches, a better understanding can be obtained. Figure 6 shows the segmentation of 
images in the five situations on the Scheltens scale. The second row displays the segmenta-
tion result using DRLSE, which fails to segment accurately. The third row represents the 
result of the proposed method, which achieves the objective of the experiment. Figure 8 
illustrates the segmentation by the proposed method for each image in Fig. 6, associated 
with the final level set function (LSF).

The experimental results obtained in this section are represented in Table  2. Table  3 
addresses a quantitative comparison of the main methods for hippocampal segmentation in 
MRI using the Dice Similarity Coefficient (DSC).

Figure 7 displays the results outlined in Table 3.

5  Discussion

Table  3 addresses a quantitative comparison of the main methods for hippocampal seg-
mentation in MRI using the Dice Similarity Coefficient (DSC). While it is possible to 
make this comparison, it is not feasible to assert that one method is the best for all types 

Fig. 5  Scheltens visual scale. Coronal T1-weighted MRI centered on the right hippocampus. Hippocampal 
atrophy graded by severity between 0 and IV from left to right. H hippocampus, T: temporal horn of the 
lateral ventricle, Ch: Choroid fissure

Fig. 6  First row: Scheltens visual scale. Coronal T1-weighted MRI centered on the right hippocampus. sec-
ond row: result of the drlse method; third row:: proposed method segmentation
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of individuals because the rates presented in these publications are calculated on different 
quantities of images and on different types of individuals. In terms of accuracy, a DSC 
index of 0.80 can be considered a good value and has been used as a reference for the 
evaluation of automated methods, according to Fischl et al. 2002. This indicates that 80% 
of the segmented hippocampal region by the technique is accurate. Most of the methods 
presented have achieved or exceeded this rate, and some have shown significantly better 
rates. Among fully automated methods, the most accurate is presented by Wang et al. 2011, 
with a DSC index of 0.90. Among these methods, it is noteworthy to highlight the high 
similarity rate achieved by our method (dice = 91.8%).

To ensure the comprehensiveness of a research, it’s recommended to conduct a thorough 
literature review to identify the most recent and relevant studies in the field of hippocampus 
segmentation. By combining insights from both older and more recent literature, researchers 
can gain a comprehensive understanding of the state-of-the-art methodologies and identify 
potential areas for further research and improvement. Figure 8 show segmentation results by  
proposed method for each image in Fig. 5 with final level set function (LSF). 

While older references provide valuable insights, it’s essential to acknowledge the cur-
rency of the literature and consider more recent studies or methodologies that might offer 
further advancements. In the context of research, exploring more recent studies could pro-
vide additional insights or improvements in hippocampus segmentation. These studies 
might leverage advancements in machine learning techniques, such as deep learning archi-
tectures, or incorporate novel imaging modalities and preprocessing techniques.

The inclusion of older references in Table 3, which provides a quantitative comparison 
of methods for hippocampus segmentation, serves multiple purposes despite the advance-
ments in the field. Here’s how older references contribute to the understanding of hip-
pocampus segmentation:

1. Historical Context: Older references offer historical context, showcasing the evolution 
of methodologies and techniques in hippocampus segmentation. Understanding the 
progression of research allows for a deeper appreciation of current methodologies and 
their improvements over time.

Table 2  Scheltens visual scale. centered on the right hippocampus, Comparison between Dice index values

Dice Dice1 Dice 1 Dice 3 Dice4 Dice 5 Average

Our method 0.908 0.912 0.925 0.921 0.923 0.918

Work [41] 0.881 0.870 0.887 0.791 0.799 0.845

R-Drsle

[42]

0.865 0.878 0.889 0.841 0.815 0.857

O-Drsle [44] 0.887 0.897 0.905 0.881 0.850 0.884
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Table 3  Quantitative comparison of methods for hippocampus segmentation

Author Method(s) DSC (average ± standard 
deviation)

Fischl et al. 2002 Probabilistic-Atlas 0.80
de Alejo et al. 2003 Neural Network 0.80 ± 0.70
Klemencic et al. 2004 AAM 0.80 ± 0.05
Carmichael et al. 2005 Single-Atlas 0.71
Heckemann et al. 2006 Multi-Atlas 0.84 ± 0.01
Chupin et al. 2007 Region Growing 0.84 ± 0.03
Han and Fischl 2007 Probabilistic-Atlas 0.83
Barnes et al. 2008 Multi-Atlas 0.86 ± 0.05
Van der Lijn et al. 2008 Probabilistic-Atlas 0.86 ± 0.03
Chupin et al. 2008 AAM 0.86 ± 0.03
Artaechevarria et al. 2009 Automatic Multi-Atlas 0.75
Collins and Pruessner 2010 Multi-Atlas 0.88
Wang et al. 2011 Multi-Atlas, Classifier 0.90
Atho et al. 2011 Cloud Model 0.86 ± 0.05
Bishop et al. 2011 ASM 0.81 ± 0.01
Kim et al. 2013 Probabilistic-Atlas 0.89 ± 0.02
Cardoso et al. 2013 Multi-Atlas 0.90
Hao et al. 2014 Multi-Atlas 0.89
Inglese P et al.2015 RFmulti classifier 0.87 ± 0.03
Qiang Zheng et al.2018 MULTI-ATLAS RF-SSLP 0.891 ± 0.01
Manhua Liu et al. 2020 automatic segmentation 0. 87
C. Ren et al. 2022 automatic segmentation 0. 901
Yang Lei Yifu.Ding et al. 2023 Deep learning segmentation 0.900 ± 0.029
Juan Jiang, Hong Liu et al. 2023 3D U-Net 0.878
 Proposed method A. level set method 0.918

Fig. 7  Quantitative comparison 
of methods for hippocampus 
segmentation
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2. Baseline Comparisons: Older studies often establish baseline methodologies or bench-
marks against which newer methods can be compared. By including these references, 
researchers can assess how far the field has progressed and whether newer approaches 
offer significant improvements over established techniques.

3. Methodological Comparison: Although newer methods may offer superior performance, 
comparing them with older techniques can highlight the strengths and weaknesses of 
different approaches. This comparison aids in identifying the aspects that newer meth-
odologies have improved upon and areas where further enhancements are needed.

4. Validation and Benchmarking: Many older references have been extensively validated 
and benchmarked using established datasets. Incorporating these studies into the com-
parison provides a basis for evaluating the performance of newer methods on standard-
ized datasets, ensuring fair comparisons across different approaches.

5.1  Volume calcul

To calculate the volume using the LSF, one approach is to perform a numerical integration 
over the domain where the LSF is positive. The integral of the LSF over this domain repre-
sents the volume of the object. To demonstrate the link between the final level set function 
(LSF) and the volume of an object, we can use a mathematical approach based on integra-
tion. Let’s assume we have an LSF φ(x, y, z) that represents the boundary of an object in 
three-dimensional space.

To calculate the volume of the object from the LSF, we will numerically integrate the 
level set function over the region where it is positive (inside the object). The absolute value 
of the LSF is often used to obtain a positive representation of the function. Thus, we can 
define the positive function g(x, y, z) as follows:

Now, to calculate the volume of the object, we need to integrate the function g(x, y, z) 
over the region inside the object. Let’s assume that this region is bounded by a domain D in 
three-dimensional space.

g(x, y, z) = |φ(x, y, z)|

Fig. 8  the segmentation by the proposed method for each image in Fig. 5 associated with its forms repre-
sented by the final level set function (LSF)
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The volume V of the object can be calculated using the following triple integral:

where dv represents the infinitesimal volume element in the coordinates (x, y, z).
The triple integration can be performed using appropriate numerical integration tech-

niques. By performing this numerical integration, we obtain an estimation of the volume of 
the object from the LSF. The experimental results obtained in this section are represented in 
Table 4. Table 5 provides a comparison between the proposed method and other methods.

6  Conclusion

This study proposes an efficient and innovative approach for the segmentation of the hippocam-
pus in MRI images, addressing the challenges posed by its small size, complex shape, and low 
contrast characteristics. The methodology involves modeling and solving a system of two-dimen-
sional partial differential equations, incorporating anisotropic smoothing and adaptive level set 
methods. The iterative application of these equations results in a new algorithm that overcomes 
limitations observed in previous models. The proposed method is evaluated for hippocampus 
volume calculation using the Scheltens scale, and the results demonstrate its clinical utility. Com-
parative analyses with manual segmentations performed by expert radiologists reveal a Dice sim-
ilarity rate averaging 91.8%. The volume values obtained align well with established standards, 
ranging between 3.19 cm3 and 1.3 cm3 for the right hippocampus. These outcomes signify a 
substantial improvement in both quantity and quality compared to existing models in the field, 
establishing the credibility and efficacy of the developed approach. In summary, the presented 
methodology proves to be a contribution to the field of hippocampus segmentation in neuroim-
aging, showcasing performance and potential clinical applicability. The accuracy and reliability 

V =
∫ ∫ ∫

_Dg(x, y, z)dv

Table 4  Scheltens visual scale. Coronal T1-weighted MRI centered on the right hippocampus,. volumes

Images

Volume
Cm3

3.19 2.96 2.15 1.645 1.289

Table 5  Comparison between 
right hippocampal volumes in 
different methods

Method Right hip-
pocampus 
volume

In [55] 3.05  cm3

In [56] 3.39  cm3

Proposed method 3.19  cm3 
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demonstrated in this study position the proposed algorithm as a promising tool for early detection 
and monitoring of diseases such as Alzheimer’s, where hippocampal changes serve as crucial 
indicators.
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